3,042 research outputs found

    Reconstruction of Residual Stress in a Welded Plate Using the Variational Eigenstrain Approach

    Full text link
    We present the formulation for finding the distribution of eigenstrains, i.e. the sources of residual stress, from a set of measurements of residual elastic strain (e.g. by diffraction), or residual stress, or stress redistribution, or distortion. The variational formulation employed seeks to achieve the best agreement between the model prediction and some measured parameters in the sense of a minimum of a functional given by a sum over the entire set of measurements. The advantage of this approach lies in its flexibility: different sets of measurements and information about different components of the stress-strain state can be incorporated. We demonstrate the power of the technique by analysing experimental data for welds in thin sheet of a nickel superalloy aerospace material. Very good agreement can be achieved between the prediction and the measurement results without the necessity of using iterative solution. In practice complete characterisation of residual stress states is often very difficult, due to limitations of facility access, measurement time or specimen dimensions. Implications of the new technique for experimental analysis are all the more significant, since it allows the reconstruction of the entire stress state from incomplete sets of data.Comment: 16 pages, 17 figure

    Electron backscatter diffraction and photoluminescence of sputtered CdTe thin films

    Get PDF
    Journal ArticleElectron backscatter diffraction (EBSD) has been used to characterize the grain size, grain boundary structure, and texture of sputtered CdTe at varying deposition pressures before and after CdCl2 treatment in order to correlate performance with film microstructure. It is known that twin boundaries may have different electrical properties than high-angle grain boundaries and in this work we have included the effects of twin boundaries. We found better correlation of solar cell device performance to the twin-corrected grain size than to the standard grain size. In addition, we have correlated the photoluminescence (PL) spectra with device performance and with the EBSD results. We find that sputtering at 18 mTorr yields the highest efficiency, largest twin-corrected grain size and the strongest PL

    Measurements of rhenium isotopic composition in low-abundance samples

    Get PDF
    Rhenium (Re) is a trace element whose redox chemistry makes it an ideal candidate to trace a range of geochemical processes. In particular, fractionation of its isotopes 187Re (62.6% abundance) and 185Re (37.4%) may be used to improve our understanding of redox reactions during weathering, both in the modern day and in geological archives. Published methods for measurement of Re isotopic composition are limited by the requirements of Re mass to reach a desirable precision, making the analysis of many geological materials unfeasible at present. Here we develop new methods which allow us to measure Re isotope ratios (reported as ÎŽ187Re) with improved precision: ±0.10‰ (2σ) for a mass of Re of ∌1 ng to ±0.03‰ (2σ) for a mass of Re of >10 ng. This is possible due to the combination of a modified column chemistry procedure and the use of 1013 Ω amplifiers for measurement via multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). For river water samples (with Re concentrations typically ∌10−12 g g−1) we design a field-based pre-concentration of Re that can be used with large volumes of filtered water (5–20 L) shortly after sample collection to provide abundant Re for isotope analysis. As a result of these developments we provide new measurements of ÎŽ187Re in standards reference materials (ÎŽ187Re values range from −0.06 ± 0.07‰ to +0.19 ± 0.05‰) and a seawater standard (ÎŽ187Re = +0.10 ± 0.04‰), providing impetus for further exploration of the Re isotope system

    Stability, Structure and Scale: Improvements in Multi-modal Vessel Extraction for SEEG Trajectory Planning

    Get PDF
    Purpose Brain vessels are among the most critical landmarks that need to be assessed for mitigating surgical risks in stereo-electroencephalography (SEEG) implantation. Intracranial haemorrhage is the most common complication associated with implantation, carrying signi cant associated morbidity. SEEG planning is done pre-operatively to identify avascular trajectories for the electrodes. In current practice, neurosurgeons have no assistance in the planning of electrode trajectories. There is great interest in developing computer assisted planning systems that can optimise the safety pro le of electrode trajectories, maximising the distance to critical structures. This paper presents a method that integrates the concepts of scale, neighbourhood structure and feature stability with the aim of improving robustness and accuracy of vessel extraction within a SEEG planning system. Methods The developed method accounts for scale and vicinity of a voxel by formulating the problem within a multi-scale tensor voting framework. Feature stability is achieved through a similarity measure that evaluates the multi-modal consistency in vesselness responses. The proposed measurement allows the combination of multiple images modalities into a single image that is used within the planning system to visualise critical vessels. Results Twelve paired datasets from two image modalities available within the planning system were used for evaluation. The mean Dice similarity coe cient was 0.89 ± 0.04, representing a statistically signi cantly improvement when compared to a semi-automated single human rater, single-modality segmentation protocol used in clinical practice (0.80 ±0.03). Conclusions Multi-modal vessel extraction is superior to semi-automated single-modality segmentation, indicating the possibility of safer SEEG planning, with reduced patient morbidity

    cyTRON and cyTRON/JS: two Cytoscape-based applications for the inference of cancer evolution models

    Full text link
    The increasing availability of sequencing data of cancer samples is fueling the development of algorithmic strategies to investigate tumor heterogeneity and infer reliable models of cancer evolution. We here build up on previous works on cancer progression inference from genomic alteration data, to deliver two distinct Cytoscape-based applications, which allow to produce, visualize and manipulate cancer evolution models, also by interacting with public genomic and proteomics databases. In particular, we here introduce cyTRON, a stand-alone Cytoscape app, and cyTRON/JS, a web application which employs the functionalities of Cytoscape/JS. cyTRON was developed in Java; the code is available at https://github.com/BIMIB-DISCo/cyTRON and on the Cytoscape App Store http://apps.cytoscape.org/apps/cytron. cyTRON/JS was developed in JavaScript and R; the source code of the tool is available at https://github.com/BIMIB-DISCo/cyTRON-js and the tool is accessible from https://bimib.disco.unimib.it/cytronjs/welcome

    Hf isotopes in zircon from the western Superior province, Canada: Implications for Archean crustal development and evolution of the depleted mantle reservoir

    Get PDF
    U-Pb and Hf isotopic measurements on zircons from the western Superior province confirm that the area contains at least three distinct terrane types. Juvenile terranes that formed mostly within the time span 2.75-2.68 Ga occupy much of the western Wabigoon subprovince as well as granite-greenstone belts to the south. Juvenile 3.0 Ga terranes that were reworked over the time span 2.7-3.0 Ga occupy the south-central part of the Wabigoon subprovince and the North Caribou block in the Sachigo subprovince. Rocks with mantle extraction ages as old as 3.5 Ga and zircon U-Pb ages extending to 3.3 Ga characterize a third type of terrane represented by the Winnipeg River subprovince. This terrane was strongly reworked during the late Archean. Arc-related magmatism was ongoing at 2.71-2.75 Ga in the different terranes, which probably accreted over the time span 2.71-2.68 Ga. Enriched Hf and high O isotopic signatures in late sanukitoid-suite plutons appear to be correlated, which suggests that assimilation of Mesoarchean crust was an important factor in their magmatic evolution. Enriched Hf isotopic signatures in detrital and igneous zircon from parts of the north-central Wabigoon subprovince support previous suggestions that the Winnipeg River terrane extends eastward beyond the Winnipeg River subprovince. The Winnipeg River subprovince was probably being uplifted and eroded into the Quetico sedimentary basin shortly after 2700 Ma, as shown by detrital zircons with enriched Hf isotopic signatures and Meso- to Paleoarchean ages. The pattern of ages and isotopic signatures from the North Caribou block and the south-central Wabigoon subprovince are similar, suggesting that these terranes are correlative. If so, the south-central Wabigoon terrane may have been tectonically transported from the north. Hf isotopic compositions of zircon from juvenile Archean sources are remarkably consistent and define an average ΔHf value of +3.5 ± 0.2 for samples with an average age of 2724 Ma and a best estimate of +2.7 ± 0.4 at 3000 Ma. Thus, the Neaoarchean depleted mantle reservoir beneath the Superior province appears to have been isotopically well mixed. ΔHf values were calculated using a value of 1.865 × 10-5 Ma-1 [Scherer, E., Munker, C., Mezger, K., 2001. Calibration of the Lutetium-Hafnium clock. Science 293, 683-687] for the 176Lu decay constant, which is thus far the best reproduced estimate and the one most consistent with depleted mantle evolution results based on Nd isotopes and Nb/Th ratios. A linear Hf mantle growth curve defined by these values and recent MORB intersects the chondritic Hf growth curve during the early Archean (3.4-4.0 Ga). This could indicate that the earliest formation of significant amounts of enriched crust coincides with ages of the oldest preserved rocks, but such a conclusion is contradicted by evidence from 142Nd and 143Nd in early Archean rocks for significant mantle depletion during the Hadean eon (>4.0 Ga). Both lines of evidence might be reconciled if Hadean enriched crust were largely remixed with its depleted mantle source near the beginning of the Archean, leaving only fragmentary evidence of its existence in the oldest rocks

    Enhanced deposition to pits: A local food source for benthos

    Get PDF
    Particle deposition experiments using mimics of biogenous negative relief (“pits”) and low-excess-density particles in a small annular flume indicate a significantly enhanced deposition rate (number of particles per time) compared to smooth, flat patches of the same diameter. This study included flow visualizations as well as observations of particle residence times, particle concentrations in the pits, and particle fluxes to the pits from the main flow. Experimental conditions of particle concentration, shear velocity, and particle settling velocity mimicked the dynamic characteristics (low excess density and large size) of organic-rich flocs and flow conditions in the subtidal and deep sea where biogenous pits are common features. Results suggest that pits provide benthic organisms an important capture mechanism for such flocs. Flow visualizations concur qualitatively with previously reported results for two-dimensional cavity flow, with unique features due to the conical shape of the pits. When the Rouse number (settling velocity/shear velocity) was much less than 1, pit deposition rate increased with increasing pit aspect ratio (AR = depth/diameter; ranging from 0.25 to 2) and always exceeded deposition to a flat patch of comparable diameter. For the single aspect ratio tested (AR = 0.5) under conditions of increasing turbulence, deposition to the pit increased under transitional flow, but then decreased to near zero when conditions reached fully rough flow. Relative enhancement of deposition to this pit decreased with increased ambient bed roughness since gravel beds also effectively collect particles. Particle concentration inside pits decreased weakly with pit aspect ratio but greatly increased with increasing roughness Reynolds number. Particle residence time increased somewhat with pit aspect ratio but decreased significantly with increasing roughness Reynolds number. Particle flux into pits from the main flow increased with both increasing aspect ratio and increasing roughness Reynolds number. Enhancement of food supply to pit inhabitants thus depends on the flow regime

    Encounter rate by turbulent shear of particles similar in diameter to the Kolmogorov scale

    Get PDF
    To clarify the rate at which particles similar in size to the smallest eddies in a turbulent fluid encounter one another via turbulent shear, 3-D video motion analysis was used to make direct measurements of relative velocities between closely spaced, near-neutrally buoyant, 700-ÎŒm mean diameter, polystyrene latex spheres suspended in an oscillating-grid turbulence tank. Smallest eddy size, termed the Kolmogorov scale, λ, was estimated as (Îœ3/Δ)0.25 where Îœ is fluid viscosity and Δ is the dissipation rate of turbulent kinetic energy. For runs made in water, the effective particle diameter examined was ≈ 3–6 times larger than λ. To measure relative velocities for particles just smaller than the Kolmogorov scale, the viscosity of the suspending fluid was increased ≈ 25 times by the addition of Methocel, a commercially available, methyl cellulose synthetic gum used for fluid thickening. For runs made in Methocel, effective sphere diameter was ≈ 0.2–0.5 times the Kolmogorov scale. Turbulent kinetic energy dissipation rate was estimated by traversing the measuring volume of a laser-Doppler velocimeter fiberoptic probe through the fluid at speeds high relative to the fluctuating fluid velocities in the tank. Resulting time series were used in analogy with instantaneous spatial series to calculate root-mean-square fluctuating velocities and integral length scales of turbulence, which in turn served as input for calculation of Δ. By examining the relationship between Reynolds number based on relative velocity between particles and particle separation distance relative to λ, two competing hypotheses were tested. The first, that turbulent eddying motions control relative velocity between closely spaced particles, was accepted for particles both slightly larger and slightly smaller than the Kolmogorov scale (0.05 \u3c p \u3c 0.10). The second, that viscous forces control relative velocity between particles, was strongly rejected in both cases (p = 0.004). The finding contradicts earlier assumptions and assertions that viscosity dominates small-scale particle interactions for sizes near the Kolmogorov scale, and it indicates that relative velocities between particles are greater than previously thought. Relative to biological mechanisms of particle encounter, turbulence therefore plays a role greater than is presently assumed in effecting encounter among particles and also between particles and organisms

    Molecular Model of Dynamic Social Network Based on E-mail communication

    Get PDF
    In this work we consider an application of physically inspired sociodynamical model to the modelling of the evolution of email-based social network. Contrary to the standard approach of sociodynamics, which assumes expressing of system dynamics with heuristically defined simple rules, we postulate the inference of these rules from the real data and their application within a dynamic molecular model. We present how to embed the n-dimensional social space in Euclidean one. Then, inspired by the Lennard-Jones potential, we define a data-driven social potential function and apply the resultant force to a real e-mail communication network in a course of a molecular simulation, with network nodes taking on the role of interacting particles. We discuss all steps of the modelling process, from data preparation, through embedding and the molecular simulation itself, to transformation from the embedding space back to a graph structure. The conclusions, drawn from examining the resultant networks in stable, minimum-energy states, emphasize the role of the embedding process projecting the non–metric social graph into the Euclidean space, the significance of the unavoidable loss of information connected with this procedure and the resultant preservation of global rather than local properties of the initial network. We also argue applicability of our method to some classes of problems, while also signalling the areas which require further research in order to expand this applicability domain
    • 

    corecore